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We apply the point successive overrelaxation method to nonsymmetric linear systems. 
The matrix of the system is assumed to be consistently ordered but the matrix correspond- 
ing to the Jacobi method may have complex eigenvalues. We give the convergence domain 
of the successive overrelaxation method and an algorithm allowing one to choose the best 
relaxation factor in this domain. 

I. INTRODKTION 

The finite-difference approximation of many physical problems leads to solving 
large-order sparse linear systems. A number of suitable iterative methods for solving 
such systems have been studied in detail by many authors [4, 5, 71. However in most 
cases, the matrices which have been studied were symmetric and consequently positive 
definite. In practice, one encounters many problems leading to nonsymmetric linear 
systems, and the associated Jacobi matrix often has complex eigenvalues. 

The point of departure of our analysis is the example of Navier-Stokes equations. 
They are written here in terms of the streamfunction and the vorticity, and give rise to 
different finite-difference approximations [ 1, 3,. . .]. 

For nonstationary problems, in the domain D x IO, T[, where L? is a bounded 
region of W2, the partial differential equation can be written as 

u, v given on ES, at every instant of time, 

{ = .& - e- : vorticity: curl of the velocity, 
J” ay 

a* a* --=-u ---= 
as aY 

U: #: streamfunction. 
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SOR FOR NONSYMMETRIC LINEAR SYSTEMS 11 

We shall only be concerned with the finite-difference approximation of Eq. (l), 
which at every point (i Ax, j Ax) in the flow domain at the time n At is given by 

(1 + 4Q”) CL - (a, + bou) K”-,,j - (a, - bou) iY+“,,.j 

- (00 + boo) L, - (a, - bo4 i,“.j+l = K. 
(3) 

At -- a, = R, Ax2 ’ b, =&-, R, : Reynolds number, 

u and v are velocity components which are supposed constant for the study of the 
matrices. 

This equation (3), applied in the entire flow domain, leads to a linear system of 
which the matrix A is block tridiagonal, the extradiagonal blocks being diagonal. 
This matrix, associated with a degree-two operator which is elliptic for steady-state 
problems, has well-known structural properties. With a convenient ordering of the 
points, the matrix is consistently ordered, which is a sufficient condition for the 
validity of the fundamental relation (5). In point of fact, all our results will hold for 
matrices that are such that (5) is true. 

To solve this system by a point iterative method, we introduce the Jacobi matrix B 
and the successive overrelaxation matrix ZU associated with A: A = D - L - U, 
where L is strictly lower triangular, U is strictly upper triangular, and D is diagonal. 

B = -D-lA + I = D-l(L + U) Jacobi matrix, 
Za, = (D - d-l [(I - co) D + uU)] Successive overrelaxation matrix (4) 
for a relaxation factor w. 

For matrices A having the structural properties specified above, we have the following 
fundamental results [5, 71: 

-If p is any eigenvalue of B of multiplicity p, then -CL is also an eigenvalue of B of 
multiplicity p. 
-A, eigenvalue of Y,, , satisfies (5) for some eigenvalue p of B; the two roots h of this 
equation correspond to +p and -TV 

(A+-- l)2=W2/2h. (5) 

We propose to study one-point successive overrelaxation method, characterized by 
ZU , the spectrum of B being known-or localized in practice-in the complex plane. 

We shall therefore study, with the help of Eq. (5), the moduli of the eigenvalues of 
& , in terms of p and w: 

-To render them smaller than unity, in which case, the successive overrelaxation 
method will be convergent for such values of CO. 
-To find a value of w which minimizes their maximum. 
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We shall suppose w different from unity, as in the case of the Gauss-Seidel method; 
the eigenvalues of this method are the square of those of the Jacobi method. 

2. OPTIMIZATION FOR THE SINGLE-EIGENVALUE PROBLEM 

Let us first study the single-eigenvalue problem, that is, the convergence and the 
minimization for X = x + iv, given by (5), associated with four eigenvalues ,U = 
j& i ipZ), for an arbitrary value of w. We shall get through a different procedure 
some results already given by Young [7]. 

THEOREM 1. (a) There exists a value wmax given by (11) such that the successive 
overrelaxation converges for every w in the interval 10, urna& if and only ifp E 53 = 
]- 1, +l [ x B?‘, domain of the complex plane. 

(b) There exists, in this convergence interval, only one optimum value of w which 
maximizes the rate of convergence of the successive overrelaxation and which is given 
bY (16)Y (17). 

ProoJ: (a) (5) leads to two real equations: 

x2 - y2 - 4p1X-p2Y)fW- 1 =o, 
2xy - w(f+y + &X) = 0. 

We obtain from (6) a polynomial equation in terms of R = x2 + y2, 

(6) 

R4 - c.IJ~(/L~~ + /L$) R3 - 2( I - w)[( 1 - UJ) + w2(~12 - pZ2)] R2 - w2(1 - w)~ 

x (p12 + ~F1.2~) R + (1 - CU)~ = 0 (7) 

We let R = (1 - w) S which makes Eq. (7) symmetric; then, with S + 1 /S = T, we 
obtain a second-degree equation with respect to T. 

(1 - w) T2 - w2(p12 + p22) T - 2[2 - 2w + w2(p12 - /A~~)] = 0, 

R” - RT(I - w) + (1 - w)~ = 0. 
(8) 

Taking the only convenient solution, we obtain 

R = T,, + [To2 - 16(1 - ~)~]l/~ 
4 9 

(9) 
To = w2h2 + ~2~) + b4(p12 + ~2~)~ + 8w2(1 - w)(I*.~~ - p22) + 16(1 - w)2]1/2. 

From this, it appears that, for every w and every ,LL, (7) has only two real roots of which 
the product is (1 - QJ)~ < 1. The convergence condition R < 1 will be P (1) > 0, 
P(R) being the polynomial equation (7) 

w2(1 - /.L12 - pL,2) + 4(w - l)(p1” - 1) > 0. (10) 
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Thus the SOR method will converge for every value of w in the interval 10, o,,,[ 
with 

which exists if and only if p E ~2 = ]- 1, + 1 [ x 2. Provided that w satisfies this 
unequality, the convergence domain of the point overrelaxation method is 9, whereas 
that of the Jacobi and Gauss-Seidel methods is the unit disk. 

(b) Inside this interval, we seek the value of w, if it exists, which minimizes R. 
We differentiate (9) with respect to w and set this differential to zero. After a series of 
tedious calculations one obtains 

with 
A,& + A,oJ4( 1 - w) + A2w”( 1 - 0J)Z + A,(1 - 0J)3 = 0 (14 

A, = A4 - A2B, A = p12 + ~2~, 

A, = 12A2B - 3A2 - 9B2, B = ~1’ - ~2~9 

A, = 24A2 + 24B2 - 48B, 

A, = 16A2 - 16B2 + 64B - 64 

from which ensues the third-degree polynomial equation with respect to 8 = ~2 x 
(1 - w)-1 

A,!? + A,Q2 + A,ii + A, = 0. 

The roots of (13) are obtained by the classical procedure 

(13) 

with 

a = A2 - B2 = 4p12p22, 

4= 
2a(8b4 - 20ab2 - a”) 

A,3 ’ 
b = A2 - B = (p12 + ,u22)2 - (p12 - p22), 

3 2 
“=&+f= 64a2b2(a + b2)3 > o 

Ao6 
QP~ 3 ~2 . 

(14) 

(15) 

For every value of p1 , p2 , we have only one real root in terms of Q, , and thus in 
terms of L2, given by (16) 

Q= A4 _’ A2B {[3b + (a + b2)lj2] a1i3[(a + b2)lj2 - b]1/3 

- [3b - (a + b2)1/2] a1i3[(a + b2)lj2 + bJ113 + A2 + 3B2 - 4A2B}. (16) 
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We can thus obtain w from w2 - (w - 1) Sz = 0. It is rather easy to verify that there 
is only one w optimum, for every p belonging to ~3, given by 

Wopt = - 
a - (J-22 + 4Ly2 

2 
if A2 - B > 0 which corresponds to WOpt < 1, 

(17) 

Wept - 
Q + (J-22 + 452)1/2 

2 
if A2 - B < 0 which corresponds to Wopt > 1. 

The case where A2 - B is equal to zero does not occur here; it corresponds to 
wept = 1. Thus we have (pl” + p22)2 = p12 - E.L 22, that is, p E (OEP), (3’) a Bernoulli 
lemniscate in the plane (pi , p2) [2]. 

3. OPTIMIZATION FOR THE TWO-EIGENVALUE PROBLEM 

We now propose to study the general problem of the minimization of [R(w, p1 , p2)] 
p E Z, with Z a given arbitrary spectrum contained within 9, for linear systems having 
Young’s properties. The interval of variation of w will be IO, wm[ with 

2 
w, = b, = max I CL2 I 

1 +b,’ j.IEZ (1 - ply/2 ’ 

(1, b,) are the real and imaginary semi-axes of the ellipse containing all elements of 
Z. The existence of w optimum minimizing R(w, p), for every p inside 9, only allows 
us to affirm that every curve among [R(o, p)IUEB has a minimum with respect to w, 
but not to foresee the existence of an extremal R(w, p*)-for the spectral radius p* 
of B, in the real case. By expanding (9) in the neighborhood of w = 0, we can establish 
the properties of these curves in this neighborhood 

UO,p.,,p2)=p1- 1. (19) 

First we study the minimization problem for a two-eigenvalue spectrum Z = 
Cu, P + 44 min, NW, ~1, R(w, EL + &)I can occur for min, R(w, p), min, R(w, 
p + dp), or R(w, p) = R(w, p + &) if this intersection exists. 

R(w, p) and R(w, p + &) will have an intersection if 

R;, dpl + RI, dpz = 0 (20) 

has a solution in terms of w : w1 E IO, w,[. We obtain this solution by differentiating 
relations (8). Thus we have 

2 
WI - I + (1 - (al” - b12))1’2 (21) 
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with 

u12 = (P2 + h212 P12 - P220L1 + 4d2 

(P2 + &2j2 - P22 ' 

b,2 JPl + 442P22 - P12(P2 + 42Y 

(I-L1 + 4%)" - P12 ' 

a, and b, being the semi-axes of the ellipse which passes through p and p + dp in the 
plane (pl , p2); wI exists if 

dp1 dpz < 0 and al2 - b12 < 1. 

In that case, R takes the value [5] 

R(~I, ,u) = (WI - 1) s. 
1 1 

We can conclude that, if w1 exists, it belongs to IO, w,[. The problem of the minimiza- 
tion of R for (p, p + dp) will be treated in the following way: 

-oI does not exist. Because of (19), it is for the eigenvalue of which the real part is the 
greatest that one must minimize R, 

%d’> = [;;$‘+ dp) if dp, < 0, 
if dpl > 0. (23) 

-If wr exists, we have to place it with respect to wopt&) and We& + &); we shall 
suppose mop&) < mop& + dp) without loss of generality. We will have three cases 

WI E IO, Wopt(p)[ 2 WOP@) = ! oo,t(p.) if dpl > 0 R:(uI , p) < 0 
Wopt(p + dp) if dp, <f RX~I, P + 44 < 0 I 

(24.2) 

(24.3) 
The determination of w optimum by means of (16) and (17) being rather long, we 
have, for the purpose of the generalization of the process of the search of w optimum, 
merely translated the right-hand inequalities. To do this, we differentiate (9) and 
set w = W, ; 

a,b, 1 
(~1” + b12) - (~1.1~ + ~2~) < (1 - (~1” - b12))lj2 -=Rw(oI,p.,,p2)<0 if wl<l. 

(25) 

581/32/1-z 
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The inequality is inverted if w, > 1. This test (25) requires only the knowledge of the 
values (p, E.L + dp); it allows us to know quickly in which case (24.1,2, 3) we are in, 
and to deduce O&Z), given by (16), (17), or by (21) according to the case: It is above 
all very useful for obtaining a generalization. 

4. GENERAL ALGORITHM 

With the results collected in the preceding paragraphs, we can construct an algo- 
rithm for the search of WOpt which maximizes the rate of convergence of the point 
overrelaxation method. The fundamental equation (5) allows us to study the spectrum 
Z = (1 pI / +i 1~1~ I}, i.e., to transfer the initial spectrum in the first quadrant of the 
p-plane without loss of generality. We shall sweep the interval IO, w,[ and frequently 
use the test (25). The following constitutes the principal stages of the algorithm. 

IAl First one determines for a given spectrum (Z), the convergence domain, that is, 
the ellipse with semi-axes 1 and b, containing (Z), hence 

2 
w ____ b, = max I P2 I 

VL= l+b,’ &LEZ (1 - ply/2 . 

m One spans IO, o,[ in the following way: 

-Bl : One searches for an eigenvalue p” belonging to 2 such that 

I*1 0 = sup /.Lri, 
PEE 

because of relation (19). 
-B2: One is led to the study of the spectrum 

Z; = (Jd’: /tzi > &L2°)i”~, 

because of relation (23) 
-B3: One calculates the intersections 

(26) 

(wi”: R(w, /LO) = R(w, $))q 

with 11’ such that w10 = infisll Jo. If ~(0 doesn’t exist, for any i, w&L’) = coo&O) 

-B4: One studies the signs of R,!JwlO, PO) and R:(wlO, $) by means of test (25). 

Ic( Four cases can occur: 

-Cl : R:(wlO, PO) < 0 and R:(wlO, $) < 0 + (24.2) : in which case one goes on 
sweeping at stage B2 by restriction to the study of the spectrum 
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One calculates the intersections 

{&: Nw, l-4 = w-4 pihe,, (27) 

if ~$1 doesn’t exist, for any i, W&Z) = w,,&A~), otherwise, one searches wzl = 
inftGIz (&I), h’ h . w IC IS submitted to the test in B4 and one goes on to m 

-c2: R:(wl”, p”) 1 0 and Rk(w’O, pl) ;> 0 ---f (24.3) 

Then we have w&Z) = w,,~&L~) 

-C3 : R;(wlO, PO) i: 0 and R:(wlO, pl) > 0 + (24.1) 

Then we have w~,,~(Z) = w10 

-C4: R:(wl”, PO) > 0 and R:(wlO, pl) < 0 

This case cannot occur because we have choosen p” such that R(w, PO) is extremal 
when w is equal to zero. Evidently, if there exists p belonging to Z such that 

PI 3 hi 
Vi E I. 

p2 > p2i 

One applies Theorem 1 for this eigenvalue. 

THEOREM 2. (a) For every linear system having Young’s properties, and such that 
the spectrum of the associated Jacobi matrix is contained in 9 = ]- 1, + I[ x .% there 
exists an interval IO, w,,[ = J determined by (18) such that the point overrelaxation 
method converges for every value w belonging to J. 

(b) If all of the eigenvalues of the Jacobi matrix are known, then by means of 
Theorem 1 and relations (19), (21), (25), one can construct an algorithm (26), (27) ,for 
the determination of the value of uoDt, belonging to J, which will maximize the rate 
of convergence qf the successive overrelaxation method. 

5. NUMERICAL EXPERIMENTATIONS 

We have not made a complete review of the numerical applications of Theorems 1 
and 2. To deduce practical important information, we have set the numerical studies 
in three directions. 

5.1. Single-Eigenvalue Problem 

For the single-eigenvalue problem, i.e., to apply Theorem 1 and to bring out the 
behavior of Eqs. (16) and (17), we have drawn Figs. I and 2. They show the respective 
influence of the real and imaginary parts of the Jacobi eigenvalue in the minimization 
of the spectral radius of ZU. 
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w opt 

\ 

I 

4 OE 

.---_--* 

I 2 3 p2 

FIG. I. Variations of UA.,,,~ depending of pz for (1) pL1 = 0, (2) pL1 = 0.2, (3) p1 = 0.5, (4) pL1 = 
0.9, (5) p1 == 0.99. 

0.5 ’ PI 

FIG. 2. .Variations of uOIft depending of p1 for (1) pLz := 0, (2) pLz = 0.05, (3) p*z = 0.2, (4) pLz = 
0.5, (5) /A* = 2. 

In Fig. 1, we can see that 
2 

Wollt = 1 + (1 _ pFL1”)v 

when pn = 0, and decreases to 0 when p2 increases, the faster p1 tends to 1 
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Fig. 2 shows us that 

19 

2 
--<I 

wept = 1 .+ (1 + /&22)1/2 

when p1 = 0 and is strictly decreasing only if p2 > 0.5. 
Note that a discontinuity appears in aopt for p2 = 0: p2 = 0, limU1,, WoDt = 2; 

p2 # 0, lin+., Wept = 0. 
Thus, we have a good idea of the behavior of wept depending on the values of PI and 

,u2. These remarks and graphs are important because there are many practical 
problems where we find 

p” =plo + ipeoEZ 

such that: 

P1° a/-Q and cL2O 3P2 V/LEZ 

In which case we apply Eqs. (16) and (17) to PO. 

5.2 Multiple-Eigenvalue Problem 

We have applied the algorithm (26) (27) for arbitrary spectrums. The program 
utilized is exactly the transposition of the different steps of the algorithm and is very 
significantly shorter and faster than the program described in [8]; we can hence widely 
increase the number of Jacobi eigenvalues without any difficulty-103 or more... 
Among several numerical examples, we retain two test problems that allow us to 
explain and visualize the execution of our algorithm and to draw some fundamental 
remarks. First, we have considered the model spectrum studied in [8]: it has fifty 

0.25 
w opt 0.5 f 

FIG. 3. Variations of R(..Tw) for the first model spectrum: The number of the curves are the 
index of the eigenvalues. 
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arbitrary eigenvalues. One can see in Fig. 3, the variations of R (SW) with respect to 
w, for six main eigenvalues of this spectrum. 

A, = 0.8 -t O.li, A, = 0.3 + 3i, A, = 0.6 + i, 

A2 = 0.78654 + 1.75432i, A, = 2,5i, Xl = 0.25 -k 0.8751’. 

We describe in this case the execution of our algorithm, as we see it in Fig. 3: 
- 

-Our algorithm begins in 1 A ( with the computation of mm(Z), - 

w,&X) = w,(h3) = 0.4825. 

-Then, in (Bl(, we retain h, such that Re(h,) > Re(X,), 1 < i < 50. 

- IB21 keeps only the eigenvalues such that Im(X,) > Im(X,) : (L&, 

-II B3 calculates the values of the intersections & and selects 

co21 = i$wil) = 0.1885 
1 

- m gives the signs of R:(u21, h,) and Rk(u21, h,) which are < 0 : case u . 

-Thus we go on in B with Z2 = (h, , h4} because 

WA,), Im@,> > Im(h2). 

- JB3) gives only one intersection w32 = 0.4784. 

- m shows us that R:(cIJ~~, h,) and R~(w~~, A,) are > 0. 

Hence we conclude by m that 

wop&q = aJo&*) = 0.3574. 

Then we examine the following model spectrum 

Z = {pk = 0.009/c + i(2 - 0.02k)}l~a~lo,J 

In Fig. 4, we describe the variations of R(Z$) for seven significant eigenvalues of 
z : tL1, p20, cL40, PO, $O, ELQO, P loo. On this set of curves, we can easily see that: 

W&Z) = “I = 0.6601 corresponding to the intersection of Rul and Ruloo , this 
result obtained through our algorithm is very close to urn(Z) = w&L~) = 0.673. 

The influence of the real and imaginary parts of the Jacobi eigenvalues and the 
direct applications of our results shall are clear from Figs. 1, 2, 3, 4; we shall only 
bring attention to the following fundamental point: 

For a complex eigenvalue or spectrum problem, if we can only obtain an approxi- 
mate value of tiODt (see Section 5.3) we must overestimate it if the imaginary parts of 
the eigenvalues are weak, and underestimate it if they are large. In the second case, 
that is absolutely necessary to avoid divergence of the successive overrelaxation. 
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I 
0.25 I 

w*= %qt (Cl I 

FIG. 4. Variations of R(gw) for the second model spectrum: the number of the curves are for 
(1) ~1, (2) P, (3) P, (4) P’, (5) P’, (6), P’, (7) P’. 

5.3 Navier-Stokes Equations 

This work originally rose from the Navier-Stokes equations, i.e., the linear system 
obtained from the finite difference equation (3). The coefficients u, v are variable, so we 
cannot apply this study directly, but it is possible to deduce from Theorems 1 and 2 
some very important information to solve the linear system (3). 

To bring out that, we have compared for a model problem in a rectangle the experi- 
mental value of WOPt obtained by solving the linear system (3) and Wept deduced from 
Theorems 1 and 2, with u and v supposed constants. With these assumptions we know 
the Jacobi eigenvalues associated to the system (3), which are generally complex-U 
and/or Y greater than unity. 

P 2)~ = * [ (1 - V)lP cos y + (1 - V2)1/2 cos $J 
0 

(28) 

with 

U--f-$ v=+v, p = I,..., l-l, q= l,..., m-l, 

where I, m are the number of grid-points in the two directions and a, and b. are given 
by (3). 

Table I shows us the values of Wept obtained by applying Theorems 1 and 2 to the 
spectrum defined by (28), taking-or estimating-UUmin , U,, , Vmin , V,,, in the 
domain and for several values of the Reynolds number. 

This table must be compared with the experimental values of WOpt in Fig. 5: We give 
the iterations number for the effective resolution of the system when w varies between 
0 and w, . Table I gives satisfactory values of wept as compared with the effective 
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TABLE I 
Values of mOpt for Several Reynolds Numbers 

Re 0.1 1 10 20 50 100 400 

uopt 1.51 1.39 1.01 0.92 0.81 0.78 0.75 

i 

N j ,, 

IO 

20 

\ 

100 ‘, i 
400 

i\=- 

i 

--\ /’ ’ 
\\ / : 

: : 
5, * 

0.5 I 1.5 w 

FIG. 5. N: Number of iterations depending of w for several Reynolds numbers, showing the 
effective experimental value of WOpt . 

values shown in Fig. 5. In particular, wept is underestimated when R, is large, which 
avoids possible divergence. 

6. CONCLUSION 

This algorithm has the same purpose as the one given by Young to solve the same 
problem [7]. The Young algorithm utilizes many more geometrical considerations, 
whereas our algorithm is strictly analytical and does not necessitate any auxiliary 
numerical solution. However like the Young algorithm, it assumes theoretically the 
knowledge of all the eigenvalues of the spectrum Z, which is a very great demand for 
large-order systems. 

Evidently, most eigenvalues do not have any influence. We must therefore determine 
the most important eigenvalues, or at least localize them. We can do this for physical 
problems, when the coefficients are constants, or estimate them when they are variable 
as for the Navier-Stokes equations. 
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It is quite evident that the remaining difficulty for an arbitrary linear system is to 
know the Jacobi spectrum or to obtain the maximum informations on this spectrum. 
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